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CONTRIBUTION TO THE THEORY OF HEAT TRANSFER 

ACROSS A TURBULENT BOUNDARY LAYER 

D, B. SPALDING* 

Mechani~l Engineering Department, Tmperial College, London SW.7 

(Receiwd 26 October 1963 anal in revised furrn 16 December 1963) 

Abstract-It is shown that certain regularities exist in the exact solutions of the partial differential 
equation of uniform-property heat transfer published by Gardner and Kestin [3] and Smith and 
Shah 141. These regularities permit the development of approximate formulae for the Stanton number 
which are probably as reliable, as means of predicting heat transfer, as are the solutions based on 
numerical integration. 

The solutions are generalized so as to hold for the case in which the “turbulent Prandtl number” is a 
constant differing from unity, and it is argued that a value in the neighbourhood of 0%87 should be 
used in future work. A discussion is presented of the way in which the theory can be extended to: 

rough walls; mass transfer at a finite rate; and non-uniform fluid properties. 

NOMENCLATURE 

Number in parentheses denotes the equation 
of jirst appearance. 

wall temperature downstream of line 
heat sink (28); 
specific heat at constant pressure 
(Btu/lb degF) (4); 
local drag coefficient (16); 
a constant (20); 
(laminar) thermal conductivity (Btu/ 
ft h degF) ; 
total thermal conductivity (Btu/ft h 
degF) (4); 
a constant (20); 
local mass-transfer flux (lbjftsh); 
(laminar) Prandtl number (=cp/k) 
(10); 
turbulent Prandtl number (49); 

NK~,~, Reynolds number based on x (35); 
NOW, recovery factor (64); 
Ns~, Stanton number (I 1); 
P, “extra thermal resistance” of the 

laminar sub-layer (27); 
*, 

4, strength of line heat sink (Btu/ft h) 
(28) ; .,r 

4 ’ heat flux to the wall (Btu/ftsh) (19); 
R, contribution to recovery factor made 

by the laminar sub-layer (64) ; 

* Professor of Heat Transfer. 

non-dimensional heat-transfer coeffi- 
cient (13); 
non-dimensional heat-transfer coefb- 
cient (16); 
temperature (“F) (1); 
non-dimensional temperature (31); 
velocity along the wall (ft/h) (5); 
non-dimensional velocity (1); 
distance along a streamline (ft) (2); 
non-dimensional velocity along a 
streamline (1); 
distance from and normal to the wall 
(ft) ; 
non-dimensional distance from and 
normal to the wall (44); 
nominal height of roughness element 
(ft) (62); 
non-dimensional height of roughness 
element (62); 
heat-transfer coefficient (Btu/ftsh degF) 
(12); 
non-dimensional total viscosity (1); 
non-dimensional total thermal con- 
ductivity (I); 
(iaminar) dynamic viscosity (lb/ft h) 
(3); 
total viscosity (lb/ft h) (3); 
density (lb/f@) (2); 
shear stress at wall (Ib/ft hs) (2); 
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144 D. B. SPALDINC; 

5, non-dimensional distance from wall 

(7) ; 
$3 turbulent contribution to c,i (48). 

Subscripts 

G, main stream: 

S, wall ; 

1, value pertaining to Np, = fVpr,t ; except 
in the case of z.@ where the “join of 
the laminar and turbulent layers” is 
referred to. 

1. INTRODUCTION 

1.1 PrezGous work 
Several papers have appeared recently which 

attempt to develop an exact theory of heat 
transfer through the uniform-property turbulent 
boundary layer. They are distinguished from 
earlier work in this field by the fact that they rest 
on exact solutions of a partial differential 
equation for convective heat transfer in a flow 
field characterized by the so-called universal 
turbulent velocity profile, i.e. the “law of the 
wall”. Unlike the older Couette-flow analyses, 
in which variations of temperature in the flow 
direction are neglected, they can, therefore, be 
expected to give precise agreement with experi- 
ment provided only that the thermal boundary 
layer is appreciably thinner than the velocity 
boundary layer and that the true properties of 
the latter are incorporated. 

The relevant partial differential equation was 
derived in [I], where a solution was presented 
for a Prandtl number of unity and a prescribed 
wall-temperature distribution; the solution was 
obtained by means of an analogue computer. 
Kestin and Persen [2] obtained a more exact 
solution for this problem, using a digital com- 
puter; their work was extended to non-unity 
Prandtl numbers by Gardner and Kestin [3]. 
Smith and Shah [4] obtained digital-computer 
solutions to the same differential equation for 
three Prandtl numbers for the case in which the 
heat flux is specified rather than the wall 
temperature. 

In all the above papers, the specification of the 
properties of the flow field was that of [l], with 
minor variations in the constants. It is probable, 
as will be argued later in the present paper, that 
this specification is inadequate, particularly in 

its implication that the effective Prandtl number 
in the turbulent part of the boundary layer is 
unity. It is, therefore, important to distinguish 
the main structure of the theory, which can be 
regarded as exact, from the particular formula- 
tions of the flow-field properties, which will 
probably require amendment in the light of more 
complete experimental information. 

1.2 Purposes of the present paper 
The solutions to the partial differential 

equation which have been obtained permit a 
number of interesting conclusions to be drawn. 
Regularities appear in them which permit new 
solutions to be generated without extensive 
further computations; these regularities incident- 
ally provide a certain degree of rehabilitation 
to the Couette-flow analysis which the theory 
was designed to replace. When, however, the 
implications of the theory for flat-plate heat 
transfer are compared with experimental data, 
the assumption that the effective kinematic 
viscosity and thermal diffusivity in the turbulent 
region are equal ceases to be tenable. Fortun- 
ately the abandonment of this assumption does 
not entail the discarding of the computations 
already carried out: they can be made applicable 
to any uniform value of the turbulent Prandtl 
number. 

It is the purpose of the present paper to point 
out and explain the regularities referred to, and 
to simplify, extend and generalize the existing 
solutions to the partial differential equation. 
In addition, it is proposed to discuss the way in 
which the theory can be extended to heat 
transfer from rough surfaces, to mass transfer 
at a finite rate, and to flows with non-uniform 
fluid properties. 

2. SIMPLIFICATION AND EXTENSION OF THE 

EXISTING SOLUTIONS 

2.1 Nature of the mathematicul problems ard 

their solutions. 
The dSfferentia1 equation. The temperature T 

in a uniform-property universal turbulent 
boundary layer, whether two-dimensional or 
axi-symmetrical, has been shown in [l] to be 
governed by the partial differential equation : 

i!T 1 b 

i),Y +- U+E’ i)u-+ 7, 
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where 

and 

TS, shear stress at wall; 
p, fluid density; 
CL, fluid viscosity; 
x, distance along wall in flow direction; 
pt, total (i.e. laminar plus turbulent) viscosity; 
kt, total (i.e. laminar plus turbulent) thermal 

conductivity; 

C, specific heat of fluid at constant pressure; 
U, time-mean velocity in the x direction. 

The differential equation may be re-written, 
for convenient numerical integration, in terms 
of a new independent variable 8, as: 

where 

(7) 

Of course, u+ and c,:. must now be regarded as 
functions of E. 

2.2 The tM)o basic problems 
The step in wall temperature. In [l], [2] and [3], 

the problem solved was that in which the wall 
temperature equalled the stream temperature 
TG upstream of the plane x = 0, but was held 
at the uniform value TS downstream of this 
plane. The initial and boundary conditions were 
therefore : 

x+ = 0, u+ (or 5) 2 0 

all x+, U+ (or E) --f co 
:T=TG (8) 

x+ > 0, U+ (or E) = 0 : T= Ts. (9) 

Solution of the equation then yields T(x+, u+), 
and therefore the temperature gradient at the 
wall as a function of x+. This gradient is related 
to the local heat flux and other quantities as 
fol1ows : 

(aT/Ws WPu+)s 
NPr TG - Ts TG - Ts w 

NP~ Nst 
= ($p (11) 

= NP~ -f-- (12) 
c (7sp)l’2 

= ST, say (13) 

where N,st and Np,. are respectively the local 
Stanton number and the laminar Prandtl number, 
cf is the local drag coefficient, and a is the local 
heat-transfer coefficient. 

The function ST (x+) is important because it 
can be used, by the employment of well-known 
superposition techniques, for the computation 
of the heat-flux distribution with an arbitrary 
wall-temperature distribution. 

The step in heat flux through the stall. In [4] 
solutions to the differential equation were 
obtained for the situation in which the non- 
dimensional heat-flux was zero upstream of the 
plane xf = 0, but had a uniform value down- 
stream of this plane. The initial and boundary 
conditions were therefore: 

x+ = 0, u+ (or E) 3 0 

all xi, U+ (or 5) --f 03 
T=TG (14) 

x+ > 0, U+ (or 5) = 0 : 
8T c 1 a2 = const s 

(15) 

Solution of this problem yields T (x+, u+) and 
therefore the wall temperature TS as a function 
of x+. The solution was expressed by Smith and 
Shah [4] in terms of Nst/d(cf/2). For uniformity 
with the practice of [2] and 131, in the present 
paper solutions to this problem will be expressed 
in terms of S,, which is related to other variables 
by: 

(16) 

= Npr (Wag)s 
Tci - Ts (17) 

(aw4+)s 
TG - Ts (18) 

= ~"/(TG - Ts) 
c (TSf)“2 

(19) 



where 4” is the local heat flux to the interface. 
Of course, S, is related to Stanton number, etc.. 
in precisely the same way as is ST; the different 
subscript is merely a reminder of the difyerent 
boundary condition (heat-flux rather than 
temperature). 

The S, function is important because it can 
be used, by the employment of well-known 
superposition techniques, for the computation 
of the wail-temperature distribution resulting 
from an arbitrary heat-flux distribution. 

~~~e,~u~~i~ons G<; and E:-. The non-dimensional 
total viscosity and thermal conductivity are 
postulated to be functions of u t and the laminar 
Prandtl number alone. For want of better 
information, the following relations were adopted 
in [l], 121, [3] and [4]: 

where K and E are constants (A’ 0.4 and t 
9.025 were adopted in [2] and [3]; A’ =- 0.407 and 
E : 10.09 were adopted in [l] and [it]). 

Inspection of these expressions reveals that 
close to the wall, i.e. at small II+, 6,: is equal tcl 
NIJ~ times E,‘ ; far from the wall, i.e. at large 
14 +, cZL and E,; are equal. Whereas (20) will IX 
adopted throughout the present paper. WC shall 
find reason to modify (21) below. 6,; /c,, i\, of 
course, the “total Prandtl number”. 

2.3 T&e existing so~~r~ons 
The ST function computed in references [2] 

and [3] is plotted in Fig. 1 (full lines). [N.B. There 
the abscissa is .~+/Np~,t rather than ST and the 
parameter Npr/Nrr,t rather than Nrr. The 
present section of the report is written as though 
the N~~,t’s were absent (i.e. equal to unity), as 
indeed they were in the work of references [Z] 
and [3] The reasott for the appearance of the 
NIJ~,~‘s is explained in section 3.3.1 

At low values of .v !. the function has the 
asymptotic form: 

ST -h 0.53835 (x ’ /N,y)’ ,:I. (22) 

FK;. 1. Numerically calculnted solutions of equation (1 ). 
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At large values of X+ and large values of HP,., the 
function has the asymptotic form:* 

(23) 

The first of these asymptotes results from 
substituting 1 for E$ and l/Np, for $ inequation 
(I) as shown in the Appendix. It is the solution 
of Leveque 151, Owen and Ormerod [SJ and 
Lighthill [7]. The second asymptote is obtained 
by neglecting the left-hand side of (l), sub- 
stituting 1 for E;L~ and taking only the first two 
terms of the expansion for E$_ It is easily shown 
that these substitutions are appropriate. With 
K = 0.4 and E = 9.025, the right-hand side of 
equation (23) is equal to 0.0746 N$?; with 
K = 0.407 and E = 10.09, its value is only 
slightly different. Accordingly ordinates equal 
to O-0746 NY: have been marked as a scale of 
NP,. on the right-hand margin of Fig. 1. 

The S, function computed in reference f4] 
is also plotted in Fig. I (broken lines). At low 
values of .x+, the function has the asymptotic 
form :t 

S, --f 0.65 1 (x+/Npr)l’a. (24) 

The derivation of this expression is given in the 
Appendix. At large X+ and large I?pr, the S, 
function tends to the same asymptote as the ST 
function namely: 

sin (r/4) $3'4 

& 
-+ -(ni4> * (E4!)1j4 

IQ4 
* (25) 

Figure 2 is based on values of 8 and u+, 
which have been tabulated by the authors of 
references [3] and [4]. Examination of equation 
(7) in conjunction with (20) and (21) shows 
that, at large U+ and NP,+, the 6 - U+ relation 
takes the asymptotic form: 

(26) ---_ 
* The Gardner-Kestin [3] solutions show significant 

deviations from this asymptote, even at large Prandtl 
number, perhaps because of the accumulation of 
rounding errors in the computations. 

t The Smith-Shah [4] solutions show significant 
deviations from this asymptote, presumably because the 
integration intervals were excessively large at low x+. 

2x 

With R = 0.4 and E = 9.025, this becomes: 

5 + u+ + 13.4 (Npr - 1) NF~I’~. (26a) 

At low uf, on the other hand, it is equally 
obvious that 5 is equal to Npr u+. Figure 2 also 

! 

10 

I 
6 8 10 12 14, 16 18 20 22 24 26 28 30 

it+ 

FIG. 2. Values of <(a+, Nplf from references [3], [4J and 
[8]. When generalized to ?%,t # 1, the ordinate becomes 

(/NP~,I and the parameter ~P~I~~~,~. 

contains some curves based on tables of f com- 
puted by Mills [8]. It should be noted that, as is 
shown in the next section, the symbol 4 has 
the same significance as the symbol t+ used by 
Deissler [12] and other authors for the dimen- 
sionless temperature in Couette-flow analyses 
of heat transfer. 

Table 1 contains values of (t - u+) deduced 
from the tables presented in references [3], [4] 
and [S]. The constancy of ([ - ta+) at large U+ 
is evident. Also included for comparison are 
values of 13.4 (Npr - 1) N;;71j4. 

2.4 Regularities in the existing solutions at 
moderate and large xf 

Table 2 contains the values of ST and Se 
which are reported in references [3] and [4] 
together with corresponding values of N&S, i.e. 
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i/iL C From S, values reference 131 I 

From 6- 

I / / I / ; !// ! 
I /i (‘1 j ! 

: 
; i,,; 

/ IO 100 iooo 
47 

FIG. 3. The Y-function deduced from exact solutions. When generalized for NP,.~ i 1, Ner 
must be replaced by NP~/NP~.~. 

(cf/2)r/s/Nst, and [Npr/S -- l/&l where Sr refers 
to the corresponding value for Npr = 1 and the 
same x+. (N.B. Actually, x+/NP~J appears in 
Table 2 rather than x+, and NP~~NP~,~ in place 
of Np,.. The presence of Npr,t will be ignored in 
the present discussion, that is to say that its 
value will be assumed to be unity. The reason 
for including Npr,t will become apparent in 
section 3.3.) 

Inspection of the column for ](~f/2)~/~/N,st -- 
l/Sr] shows that this quantity exhibits only small 
variations for x+ values greater than or equal to 
104. This behaviour may be expressed as: 

x+ 3 10”: NpJS m l/S1 + P (27) 

where P is a function of Prandtl number, and is 
slightly dependent on whether the ST or the S, 
function is in question. The variations are 
probably as much due to minor inaccuracies 
in the tables of references [3] and 141 as to any 
other cause. 

Figure 3 shows a plot of P, or rather 13.4 + P, 
versus Npr. The values of P are the values which 
Table 2 shows are taken by N&S - l/S1 at 
large x+. Circles represent deductions from ST 
values, squares represent deductions from S, 
values. Also shown, as crosses, are some values 
taken by 5 - U+ + 13.4 at large u+, deduced from 

Table 1; evidently they lie close to the P values. 
The extent to which equation (27) is obeyed, 

and the ease of interpofation in Fig. 3, suggest 
an obvious and easy way of extending the 
existing tables of ST and Sq. Before exploring 
this possibility however, it is fruitful to examine 
the reasons for the great regularity which the 
ST and S, functions have been seen to possess. 

2.5 Explanation qf equation (27) 
The following argument explains why the 

ST and S, functions obey equation (27) at 
moderate and large x+: 

(i) Consider the function A, (x+) which is 
related to the wall temperature downstream of a 
line sink of heat, of strength 4’ (e.g. in Btu/ft h), 
in an otherwise adiabatic wall, by: 

To - Ts =z (Q’/+) A,. (28) 

This function can be obtained by solving the 
partiat differential equation (1) subject to the 
conditions : 

x+ = 0, u+ (or 5) > 0 

x+ > 0, U+ (or E) = 0: (W/at) = 0 
(29) 
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Familiarity with the corresponding problem of 
heat-conduction theory, namely that of the 
transient temperature distribution in a medium 
subsequent to the release of an instantaneous 
heat source, makes it obvious that successive 
temperature profiles will have the qualitative 
features of those sketched in Fig. 4: specifically, 
the profile will become broader and lower as x+ 
increases, and will exhibit a maximum at the wall. 

0 iI+ 

FIG. 4. Sketch of tem~ratu~ distributions at successive 
sections through a turbulent boundary layer downstream 

of a line heat sink. 

(ii) Now the (laminar) Prandtl number can 
only influence the heat-transfer process in the 
immediate vicinity of the wall, as may be seen 
from consideration of equation (21) for example. 
Yet, as Fig. 4 shows, the temperature gradients 
in this region are negligible except immediately 
downstream of the heat sink (small x+). Since 
the Prandtl number cannot exert its influence in 
the absence of a temperature gradient, the A, 
function must be independent of PrandtI number 
at moderate and large xf. 

(iii) The Sq function can be generated from 
the A* function by regarding a continuous heat 
flux 4” as made up of a series of line sinks.* We 
see that the wall temperature must be: 

* This procedure for deriving S,, is used in the Appendix. 

J 5+ 

= 

0 
A, ,&l/2 dx+ (30) 

and so, since Q”/[c(Ts~)~/~] = const. by hypo- 
thesis and Sq is defined by equation (19), we 
have : 

or 

(31) 

(iv) But, as explained in (ii), A, must be 
independent of Npr for moderate and large x+. 
It follows that the Prandtl number can only 
influence the value of N&S9 by way of the 
integration constant in this x+ range. In other 
words, NefSq must be equal to a function cf 
x+ plus a function of Prandtl number. Obviously 
(S,,+-1 provides a suitable version of the 
function of x+. 

(v) As inspection of Fig. 1 shows, ST and S, 
are nearly equal in the Prandtl number range in 
question; moreover they have the same asymp- 
tote at high x+ and NP,. [equations (23) 2nd 
(25)]. It is, therefore, to be expected that Np,l,vr 
differs from ~/ST,I at the same .x+ by a quantity 
which depends on Np,. alone. This is what it WRF 
desired to prove. 

Equation (27) can also be interpreted in 
another way: Np,.jS is equal, according to 
equation (19), to (TG - Ts)c(Ts~)~:~/~“; it thus 
has the significance of the non-dimensional 
“resistance” to heat transfer (temperature 
difference per unit heat flux) of the whole 
boundary layer. l/S1 is therefore the “resistance” 
which the boundary layer would have if the 
fluid Prandtl number were unity. If P is de~ned 
as Npr/S - ~/SX, it can be called the “extra 
resistance” associated with the fact that the 
Prandtl number differs from unity. Equation 
(27) therefore implies that this “‘extra resistance” 
is dependent on Prandtl number alone at 
moderate and large values of x+. 

The same interpretation aids the understand- 
ing of why the asymptotic values of 8 - U+ 
are closely equal to the asymptotic values of P, 
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as Fig. 3 clearly shows. For, in the analysis of 
heat flow through a boundary layer having no 
temperature variation in the x” direction, i.e. 
in a Couette-flow analysis, we should calculate: 

Now comparison of (32a) with (7) shows that f 
is exactly equivalent to t+, the non-dimensional 
temperature appearing in the Couette-flow 
analysis; t+ itself, when described in the terms 
of the last paragraph, can itself be regarded as the 
“resistance to heat transfer” of the layer of 
“thickness” u-b. So the “extra resistance” due to 
the fact that the Prandtl number is not unity 
is given by the quadrature appearing in equation 
(32)a, and is also equal to [ --- u+. It is no sur- 
prise that [ .-- U+ is a function of Prandti 
number alone for moderate and large u+-, for 
it is only in the low u’ region that the integrand 
of the quadrature is finite. We have already seen, 
in equations (26) and (26a), particular forms of 
the [ - U+ asymptote, calculated by inserting 
(20) and (21) in (32a). 

Summarizing, we may conclude that exact 
solutions of the partial differential equation of 
heat transfer across a turbulent boundary layer 
have shown that, at moderate and large values 
of x+, the effects of the Prandtl number of the 
fluid are confined to the value of the effective 
“resistance” to heat transfer of a thin layer 
adjacent the wall. Convective (i.e. a/ax+) terms 
only need to be considered in regions where the 
fluid Prandtl number is without influence. This 
conclusion may be regarded as obvious; never- 
theless it could not have been drawn with such 
complete certainty had the authors of references 
121, [3] and [4] not computed their exact solutions 
of the partial differential equation. The con- 
clusion can be regarded as a limited rehabilitation 
of the Couette-flow analysis. 

2.6 Approximate expressions for the P-function 
The significance of the P(N*) function may 

become clearer if the reader is reminded that a 
Couette-flow analysis of the kind originated by 

Prandtl [9] and Taylor [lo], would lead us to 
write : 

u’- > u; : f -- II~- = (Npr - 1) uiim (32b) 

where u;- is a constant, variously taken to be 
5.68 or 8.9, which measures the non-dimensional 
thickness of the laminar sub-layer. Other 
authors including von K&man [18], Rannie [I91 
and Deissler [12] have suggested other forms of 
the P function, but it would be inappropriate 
to review these here. We merely take equation 
(32b) as a reminder of the convenience of having 
an analytical expression for the P function. 

There are three aspects of the P function which 
require attention at the present juncture: 

(i) Approximately, the P vatues displayed on 
Fig. 4 can be represented by the relation: 

P = 13.4 (NZ’ --- 1). (33) 

The coefficient, 13.4, is, as already stated, the 
value of the expression (7r/4)(E4!)1’J/[55’4 sin 
(r/4)] appearing in equations (23), (25) and (26), 
for K = 0.4 and E = 9.025; equation (33) is 
therefore certainly correct at both infinite and 
unity Prandtl number. The equation is shown 
as a straight line in Fig. 3. 

The fact that the points obtained from Table 2 
tend to lie below the line is almost certainly due to 
inaccuracies in the Table 2 values. The values of 
P at low Prandtl number contained in Mills’ [S] 
report have not been included on the graph, but 
they lie appreciably below the straight line. 

(ii) It would no doubt be possible to find an 
analytical relation between P and Npr which 
was in even closer agreement with the points 
marked on Fig. 3 than is equation (33). How- 
ever, it must not be forgotten that, though the 

I- % function of equation (20) is known to agree 
well with the experimental velocity distribution 
data [ll], the ~hf function of equation (21) is 
little more than a guess; no attempt whatever 
has been made to choose this so as to fit experi- 
mental measurements. In this connexion it is 
relevant to mention that Deissler [12] has made 
use of an E;- expression which, like that of 
equation (21), increases in proportion to (u+)4 
near the wall. Deissler’s expression contains 
however, a variable coefficient, the value of 
which was chosen so as to fit experimental data 
for heat and mass transfer at high Prandtl or 
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Schmidt numbers. If that value were adopted 
here, it would be reasonable to replace equation 
(33) by: 

P = 8.95 (N;? - 1). (34) 

It may be expected that equation (34) would 
iead to more correct heat-transfer predictions 
than the values of P implicit in references f3] and 
E41. 

(iii) In any case, however, there is no necessity 
to guess the nature of the P function, or to force 
it to fit any particular analytical expression; 
for the function can be derived directly from 
inspection of the prolific heat-transfer data which 
are available. This has been done by one of the 
author’s co-workers; the result will be the subject 
of a separate report. In what follows, we merely 
assume that the function P(N&) exists. 

2.7 Approximate expressions for the ST and 
S, functions .for moderate values of x+ 

Relation between x+ and NJ+,% for a Jtat plate. 
Since “length Reynolds number” is a more 
familiar concept than x+, it wili be helpful to 
establish the relation between these quantities 
for the particular case of flow of uniform stream 
velocity UG. It will be sufficiently accurate to 
start from the approximate law for local drag: 

-l/5 

- 0.0296 ( NR ,,,) -1’5. (35) 

The definition of X+ (2) now permits the easy 
derivation of the following relation: 

x+ = 0.191 (NR,,,)Q’Q. (36) 

Thus the common Nx,,, range: 2 x lo5 to 
5 x 107 corresponds roughly to the x+ range: 
104 to 106. We shall now derive approximate 
expressions for the quantities ST and S, which 
are valid in this range. 

The ST function. It is shown in the Appendix 
that, when 6;. has the form which corresponds 
to the well-known “seventh-power velocity 
profile”, and the total Prandtl number is unity, 

ST,1 = o-1479 (x+)-i/Q. (37) 

Treating equation (27) as exact, we can derive 
a corresponding expression for ST_ It is: 

ST = NpT [6*76 (x+)~‘~ + PI-l. (38) 

This expression, with P inserted from equation 
(33), will be found to agree closely with the values 
calculated by Gardner and Kestin [3] ; the 
comparison is made in Table 3. With P inserted 
from equation (34), better agreement with 
experimental data might be expected. It should 
be noted that the ‘~seventh-power profile” is a 
good approximation to the real velocity profile 
in the Reynolds-number and xf ranges in 
question. 

The S,,function. It is shown in the Appendix 
that the “seventh-power profile” assumption 
also implies : 

S,,l = 0*1509 (.X+)-l;Q. (39) 

It may therefore be expected that, for 104 & 
x+ < 106, the following relation should yield 
S, values in good agreement with those of Smith 
and Shah [4]: 

S, = Npr [6.64 @+)*I9 + P1-l (40) 

with P inserted from equation (33). Table 3 
again shows that the expectations are realized. 
The use of equation (34) for the P function might, 
once again, yield better agreement with experi- 
ment. 

2.8 Approximate expressions jbr the ST and S, 
,fun~tions for moderate and small ualues of x+ 

It may be desired to use approximate formulae 
for ST and S, which are also valid at arbitrarily 
small values of x+, i.e. at those for which the 
thermal boundary layer is confined almost 
wholly within the laminar sub-layer. Since the 
asymptotic relations (22) and (24) are available 
to act as a guide, it is fairly easy to derive 
formulae which fit the exact solutions both at 
low x+ and at values between lo4 and 106, and 
which have a good chance of fitting at inter- 
mediate values also. The following relations 
may be found to involve a reasonable comprom- 
ise between accuracy and complexity. 

NPr I 
4 

ST = -- 
6.76 (,+)1/S + P + 

+ jo.53835 (~)-1~3]*~ (41) 
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and 

![ 

NP~ 

I 

4 

s, -= 6.64 (x+)1/9 + p 4 

+ [,.,,I i;;.)-““]“r’“. (42) 

These equations are readily seen to reduce 
respectively to equations (22) and (24) at low 
x+, and to (38) and (40) at large x-l. If P is 
inserted from equation (33), they can be expected 
to yield results in good agreement with those of 
references [3] and [4]. This last expectation may 
be checked by reference to Table 4, in which 
comparison is made between the exact and the 
approximate values. 

Equations (41) and (42) may of course be 
used for filling in the as-yet-uncharted regions 
of Fig. 1. Indeed, in view of the uncertainty 
about the exact nature of the <in function and the 
corresponding P (Npr) function, the equations 
may be thought to render unnecessary any 
further computations of the kind presented in 
[3] and [4] until the said uncertainty has been 
removed by further examination of experimental 
data. 

3. GENERALIZATION OF THE THEORY FOR 

NON-UNITY PRANDTL NUMBER IN THE TURBU- 

LENT REGION 

3.1 The necessity for generalization 
One of the main assumptions of the Couette- 

flow analysis has been shown to be well-justified, 
namely the assumption that the laminar-sub- 
layer region acts solely as a “resistance” to heat 
transfer. It is therefore profitable to recall that 
the Couette-flow analysis for heat transfer from 
an isothermal flat plate is in marked disagree- 
ment with experiment, when the “total” Prandtl 
number in the turbulent region is taken as unity. 
For such a situation, with Nst.1 placed equal to 
cf/2 as is implied by the turbulent-prandtl- 
number assumption, equation (27) would lead 
to: 

Cfl2 
~~~~ = 1 + (c,/2)1’2P. 
Nst 

(43) 

The expression on the left-hand side is the so- 
called Reynolds analogy factor; on the right- 
hand side, P might be substituted from equations 

(33) or (34). In the former case, for a Prandtl 
number of 0.7, P has the value: -- 3.04. 

Now the presence of (cf/2)l’a, which varies with 
the Reynolds number of the plate, implies that 
the Reynolds analogy factor is appreciably 
influenced by Nae,$. Thus, if cf/2 is calculated 
from equation (35), (cf/2)N,yt equals 0.816 at 
NR~,~ c 105 and 0.927 at NR~,% -= 107. Experi- 
mental data do not reveal nearly so strong an 
effect of Reynolds number. 

Similar conclusions may be drawn from 
inspection of recovery-factor data, which again 
fail to reveal the strong Reynolds number effect 
which would exist if the “total” Prandtl number 
in the turbulent region were unity. 

Whereas in the past it has been possible to 
ascribe the discrepancies between prediction and 
experiment to the fact that the Couette-flow 
analysis neglected the differential coefficients 
with respect to X, the findings of section 2 of the 
present paper show that this explanation is 
untenable. It is therefore necessary to examine 
whether the solutions of the partial differential 
equation published by Gardner and Kestin [3] 
and by Smith and Shah [4] can be generalized 
to non-unity “total” Prandtl number, or whether 
they must be discarded and replaced by solutions 
based on a new E,~ function. 

3.2 Experimental evidence for the calue qf the 
turbulent Prandtl number 

Kestin and Richardson 1131, in their review of 
heat transfer across turbulent incompressible 
boundary layers, have collected data for NPr,t 
deduced by several authors from measurements 
in turbulent pipe flows. Figure 5 (Fig. 11 of 1131) 
illustrates their findings. As may be seen, the 
various curves show marked disagreement with 
each other, but nevertheless strongly suggest 
that, if a constant value is to be assumed for 
NPr,t, 0.8 would be more reasonable than 
1.0. 

Van Driest [ 141 and Spence [ 151 have developed 
theories for the Reynolds analogy and recovery 
factors of a flat plate in turbulent flow which 
account almost completely for the convective 
(a/ax) terms in the partial differential equation 
and which allow NB,t to be a constant, different 
from unity. Comparison of the results of these 
theories, which differ more in appearance than 
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FIG. S. Values of NpI.t vs. non-dimensional distance 
from wall in turbulent pipe flow, collected by Kestin 

and Richardson [13]. 

in essence, with experimental data for air suggest 
that NP,.,~ is about 086. 

Values of Npr,t may also be deduced from 
measurements of the temperature profile in fully 
developed turbulent pipe flow. Such measure- 
ments have recently been reported by Johnk 
and Hanratty 116-j who found that, for values of 
y+ from thirty to two or three hundred, the 
temperature profiles could be represented by: 

t+ = 3.3 + 5.1 logmy’. (44) 

Herey+isofcoursey(7sp)1’s/p, whereyisdistance 
from the wail, and t+ is (T - Y’s) c(~sp)r/s/$‘, It 
is well known [17] that, in precisely this y+ range, 
the velocity profile can be expressed by: 

u+ = 5.5 + 5.75 log10 y+_ (45) 

Elimination of y+ between (44) and (45) leads to: 

t+ = 0,887 U’ - 1.58 (46) 

We shall now show that the coefficient of U+ 
can be identified with N~r,t_ 

By differentiation of (49 we obtain : 

dt+ 

‘aj = 0.887 2;. (47) 

When t+ and U+ are re-written in terms of T, a 
and other variables, this equation becomes: 

1 dT 0.887du 
------a 

’ ’ 4” dy 7s dy 
(48) 

If the local heat flux is equal to the heat flux 
at the wall, Q”, we may write: 

1 0.887 
c. -= 

kt w 

i.e. Np,.,t = 0.887. (49) 

This value of the turbulent Prandtl number is in 
good agreement with the value of 0.86 deduced 
in references [14] and [15]. 

We can also learn something about the 
resistance of the laminar sub-layer in the 
experiments of reference [16] from the fact that 
the additive constant in equation (46) is -1.58. 

Let us suppose, generalizing equations (20) 
and (21), that: 

and : 

56 A. = 1 + 6, (24’) (5Oa) 

Ch A = (UNP~) + (lINpr,t) 4 (u’) (Sob) 

where Npr of course refers to the ~~rnin~r 
Prandtl number and Npr,t is a constant. In a 
Couette-flow analysis, differential coefficients 
with respect to x are neglected. Then equation 
(1) becomes an ordinary differential equation, 
with solution : 

*+=Npr,tu++NPr,tj~- 1) 

J 

U+ 1 
du+. 

0 1 + (N~,t~N~) #J 
(51) 

The second term of equation (51) can be 
identified as the extra resistance of the laminar 
sub-layer, associated with the fact that NPT is 
not equal to Nm,t; let us call this: 

&,t P (NprINpz,t). 

Generalizing equations (33) and (34) we may 
guess that P is equal to a constant times 
[(NprlN~t,t)s’~ - 11; then, equating NP,.,z P to 
the -158 appearing in equation (46), with 
Np,.,t = O-887 and Np,. = O-71, we obtain: 

P = 11.57 [(Nfi/Nr*,t)3’4 - I]. (52) 
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Thus the data of Johnk and Hanratty yield a 
coefficient rather nearer to that appropriate to 
[3], [4] and [8] than to that deduced from 
Deissler’s recommendation. 

Of course this brief review does not finally 
settle the questions of whether Npr,t can be 
taken as a constant, independent of NP~ and 
other influences, of what is the best value of the 
constant, or of what is the relation between 
P and Np,/Np,.t. Nevertheless it suggests that 
a theory based on equations (49) and (52) 
should give fairly good predictions of heat 
transfer for air. It further encourages the 
development of a complete heat-transfer theory 
based on a constant value of Npr,t; this develop- 
ment now follows. 

3.3 Generalization of the solutions of [3] and [4] 
We shall now show that the solutions dis- 

played in Fig. 1 are still valid for NpT,~ = const 
# I, provided that appropriate adjustments 
are made to the expressions for abscissa and 
parameter. Equation (1) may be written, on 
introduction of (50a) and (50b), as: 

i’T 1 i: 

is+ = u+ (1 + 4) iiU’ 

x (l/N~r) + U/nTP,,t> 4 

I~----- 

ZT 

1+4 . iu I 
-- . (53) 

This equation can be re-arranged as : 

2T 

i! (x+/Npr.t) 

provided that they are expressed in the form 
S (x- /Np,,t, Npr/NPr,t) instead of S (.Y . Nf+.). 

It must be emphasized that this generalization 
of the solutions of [3] and [4] is only strictly 
valid when the thermal boundary layer starts 
from a line on the wall at which the \,elocity 
boundary layer already has an appreciable 
thickness. When this condition is not satisfied, 
and when Npr.t is less than unity. account 
needs to be taken of the fact that the shear 
stress within the thermal boundary layer is not 
uniform, for example by the method used in 
Spence’s [15] theory. This matter will not be 
discussed further here. 

3.4 Generalization qj’the approximate espressions 
for ST and Sq 

One way of generalizing equation (38) to the 
case in which Npr,t is not equal to unity, is to 
note that equation (A.21) of the Appendix 
shows the thermal resistance of the turbulent 
region to be approximately: 

Npr,t. (56) 

Since the extra thermal resistance afforded by 
the laminar sub-layer is ~VP,.,~ P (Npr/Npr,t), the 
total resistance to heat transfer is: 

NP, NP~ 
_~~ =_-: 

ST 7 
-f- Npr,t P. 

c T.l 
(57) 

We therefore conclude, making use of equation 
(56) : 

Now Gardner and Kestin [3] and Smith and 
Shah [4] solved the equation: 

2T 
2s + 

(58) 

A similar argument applied to the case of 
uniform 4”/(7s)l/” leads to : 

Nst __ sq 
(55) (cf/2)1’2 NP~ 

xN& j6.64 (;;,)l”-- Pj-’ 

with, of course, a particular expression for 4, 
namely: (K/E) [exp (KU+) - 1 - Ku+ - 
(Ku+)2/2! - (Ku+)3/3!], which has been shown 
in [ 1 l] to fit experimental velocity distributions 
rather well. It follows that the solutions con- 
tained in [3] and [4] are still valid for Npr,t # 1, 

(59) 

Equations (58) and (59), with P inserted from 
equation (52) and Npr,t placed equal to 0.887, 
probably represent the best simple recom- 
mendations which can currently be made for 
calculating heat transfer through incompressible 
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boundary layers in the x+ range from 104 to 
106. For the isothermal flat plate in air, if we 
ignore the fact that the equal lengths of the 
thermal and velocity boundary layers renders 
the applicability of the theory questionable, we 
obtain, from equations (58), (35) and (36): 
(cf/2)/N,~t = 0.817 for x+ = 104 and (cf/2)/Nst 
= 0.835 for x+ = 106. These values exhibit 
a small effect of Reynolds number and a mean 
value that is in excellertt agreement with the 
experimental value which is usually taken to 
equal O-825. 

It is possible in the same manner to generalize 
equations (41) and (42) and so to obtain expres- 
sions for ST and S, which are valid over a wider 
range of x+ than those of (58) and (59). The 
expressions are : 

4 

sT = 6.76 (x+/Np7,,)11Q + P I + 

+ [,a53835 (;;) -“;“I *;,;, (60) 

and 

1 

4 

--. $ 

6-64 (~+/N~~,~)l/Q -+ P 

+ [0651 i;;) -,.,I ‘),,. (61) 

Once again, P is here to be regarded as a function 
of (N~r/Nh,t), for example that contained in 
equation (52). 

4. AN OUTLINE OF FURTHER DEVELOPMENTS 

So far, the line of inquiry into heat transfer 
through turbulent boundary layers which is 
represented by references [l], [2], [3] and [4], 
though more rigorous than that based on the 
Couette-flow analysis, has not been extended 
to those problems involving non-uniform fluid 
properties and mass transfer at finite rates for 
which Couette-flow analyses have been available 
for many years. An obstacle to this extension 
has lain in the apparent prior necessity to 
possess detailed descriptions of the E,$ and of 
functions which are valid in these situations. 

This obstacle has been partially removed by 
the findings described in the earlier parts of the 
present paper, where it is suggested that a theory 
adequate for heat-transfer prediction at moderate 
and large values of x+ can be built upon two 
elements: a function P(NpT/Np7,t), possibly 
obtained empirically, expressing the “extra resis- 
tance” of the region close to the wall; and a 
solution to equation (1) with ci- assumed equal 
to E;l-fNpr,t where Npr,t is a constant, say 0.887. 
Tn the latter element, quite rough expressions 
for 6: may suffice, as witness the success of 
equations (37) and (39), which are based 
on power-law expressions for fftr in giving 
good approximations to the solutions of [3] and 
[41* 

In the following sections, a preliminary 
discussion will be presented of the way in which 
the regularities which exist in the exact solutions 
suggest extensions of the theory to the cases of: 
rough walls; mass transfer at finite rates; 
and non-uniform fluid properties. Of course it 
will be taken for granted that independently 
derived theories are available for the calcuIation 
of the shear-stress ~istri~~tio~ on the wall 
under these circumstances; for this forms part 
of the data of the heat-transfer problem, and 
cannot be deduced from our present theory. 

4.2 Heat transfer across turbulent boundary 
layers on rough walls 

The solution of the partial differential equation. 
This element of the theory is relatively easily 
dealt with: the &-,I and S,,l functions of 
(x+/N~~,t) are precisely the same as those which 
are valid for a smooth wall. The reason for 
the invariance of the solutions is that there is 
little reason to suppose that roughness affects 
the E; function anywhere except at low values 
of u+; and we have already seen that precise 
description of the 6,’ function is unnecessary 
close to the wall when N& equals NP~,~. Of 
course, the shear-stress distribution on a rough 
wall is markedly different from that on a smooth 
wall, other conditions being equal; however, 
we have already emphasized that the calculation 
of this distribution belongs to a different chapter 
of fluid-dynamic theory which is not to be 
touched on here. 

The P~funct~o~. For smooth walls, P has been 
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assumed above to be a function of Na/Nm,t 
alone. When the wall is rough, however, at least 
one further parameter may be expected to 
influence it, namely y,‘, defined by: 

where yr is the “height of roughness element”. 
The characterization of roughness by such a 
non-dimensional quantity is of course well 
known [17]; strictly speaking the geometrical 
shape and relative spacing of the protruberances 
on the wall are also important, but some success 
has been achieved in using yTi- alone as the 
characteristic by defining yr as a “nominal” 
rather than “actual” dimension of the roughness. 

Two recent publications, by Dipprey and 
Sabersky [20] and Owen and Thomson [21], 
fortunately throw much light on the nature of 
the function P (Np,jNp,.,t, y; ). Figure 6 shows 
values of [(cf/2)1/Z/N,yt - (~f/2)-~!~] versus y,‘- 
deduced from data presented in these two 
references. If Npr,t equals unity, the ordinate 
has the significance of P; it is seen that P is 
practically constant for y;- < 10, that P rises 
slowly with y;+ when this quantity exceeds about 
100, but that P has a minimum value when y,‘- 
iies between 10 and 100 for the higher values of 
Prandtl number. 

If the Prandtl number of the turbulent region 
is not taken as unity, but as a different constant, 
Npr,t, the ordinate of Fig. 6 has the significance 
of Npr,t [P + (Npr,t - 1) (~f/2)-l/~], as is seen by 
consideration of equation (50), and the sub- 
sequent discussion, with I+ and u + evaluated 
for the main-stream state of the fluid. If Npr,t 
is taken as 0.887 and (cf/2) is estimated to be 
OGO3, it will be found that the values of the 
apparent low-v;- asymptotes of Fig. 6 agree fairly 
well with the P-function of equation (52). 

A careful study is needed of all the data 
available in the literature for heat transfer from 
rough surfaces before a recommendation can 
be made for the P (Npr/Npr,t, y,+) function and 
the associated NpT,t value (function?) which 
should be used in design. Nevertheless it is clear 
that the work of references [20] and [21] forms 
an already quite advanced starting point. 
particularly since the authors of both these 
references have suggested expressions for the 
asymptotic forms of the P function for high Jo , 
based on the hypothesis of a particular model 
for the flow induced by the roughness elements. 
It is to be expected that further research in this 
field will quickly bear fruit. Of course, it will 
be necessary to carry out experiments at both 
higher and lower Prandtl numbers than have 
been used so far. 

1 

~---- Reference r2ill i ’ I I I I 

FIG. 6. Experimental data showing the influence of wall roughness on the P-function. 
If Npr,t = 1, the ordinate is P; otherwise the ordinate is Nm,t [P f (NP~J - 1) (c&V”“I. 
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4.3 The effect of mass transfer 
The solution of the partial differential equation. 

When mass transfer occurs at appreciable rates 
across the wall, as in transpiration cooling, 
vaporization and condensation, the differential 
equation (1) requires modification, even for 
the case of unity Np,./N~r,t; for variations in 
shear stress in the immediate vicinity of the wall 
can no longer be neglected; and a convective 
component of heat transfer normal to planes of 
constant U+ must also be accounted for. It is 
not proposed to discuss this matter here, except 
to remark that, at least in the case in which the 
thermal and velocity boundary layers start from 
the same line, an adaptation of the method of 
Spence [15] is capable of yielding a fairly simple 
solution. The author hopes to demonstrate this 
in a later publication. 

The P-function. We must now expect that P 
depends on a non-dimensional expression for 
the mass-transfer rate, as well as on Npr/Npr,t; 
such an expression is ti” (~sp)-1’2 where ti” is 
the local mass-transfer flux. The influence of 
this quantity on P can only be established 
experimentally, but suitable data currently 
appear to be lacking. This is another field in 
which a relatively small amount of systematic 
research would yield rich information. 

4.4 The eflect of non-uniform fluid properties 
When the temperature difference across the 

boundary layer is large, or when the Mach 
number of flow is high, the values of t.~, p and 
NP,. vary significantly, particularly in the laminar 
sub-layer. It is therefore, to be expected that the 
thermal resistance of this layer is influenced by 
at least the first and possibly the second gradients 
of these properties as functions of distance from 
the wall. Thus the P function may be expected 
to vary with the arguments indicated by the 
following expression, in addition to Npt/Npr,t, Y; 
and ti” (~~p)-lj”: 

(; . %),I (63) 

where subscript S of course denotes values at 
the wall. 

The first two of these are related to the local 
heat flux by way of the property functions: 
p(T) and p(T); they are equal to zero for an 
adiabatic wall. Possibly the second two are only 
important in the latter case. 

Numerous experimental data are available 
for heat transfer under the relevant conditions, 
and it is curious that (so far as the author is 
aware) no attempt has been made to deduce the 
above P function from these data. Of course 
some authors, notably Deissler [12], have 
implicitly calculated the function by making 
arbitrary assumptions about the c,’ and E; 
functions ; invariably some sort of agreement 
between experiment and prediction has been 
achieved. Since however the comparison has 
usually been made in terms of Nusselt number 
at a specified Reynolds number, i.e. at several 
removes from the initial assumptions, a sound 
assessment of the validity of the assumptions 
has been hard to come by. What seems to be 
required is a comprehensive review of experi- 
mental data, plotted for example in the form of 
P versus [(l/p) (+/&+)]s with other parameters 
held constant, and with the “theoretical” 
curves plotted for comparison. Such plots would 
permit a sounder judgement of whether the 
“theories” have anything to recommend them. 
Incidentally, they would also permit purely 
empirical P functions to be deduced which 
could thereafter be used for heat-transfer 
calculations. This too is a task for the future. 

Of course, the solutions of the partial differ- 
ential equation for Npr/Npr,t = const. must also 
be re-examined. However, since the viscous 
layer is unimportant in these problems, the 
variation of viscosity will be of no account. 
Moreover, if Spence’s [15] suggestion, viz. that 
it suffices to replace y by Jp dy, proves to be 
correct, only minor changes will be needed. 
The study of the P function is likely to prove 
more rewarding. 

In high-Mach-number problems, it is not 
sufficient merely to know the Stanton number: 
the recovery factor, NRF must also be calculated. 
It is therefore perhaps worth remarking that a 
reasonable expectation from the above results, 
which receives partial justification from Spence’s 
paper, is that the recovery factor can be expressed 
as: 
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where N_w,~ is the recovery factor which would 
obtain if NF, were equal to Nr,.,t throughout the 
boundary layer, and R is a function of NI+.INI~,.~ 
which accounts for the fact that nip, is not equal 
to Npr,t in the laminar sub-layer. R can easily 
be calculated for a Prandtl-Taylor sub-layer 
(i.e. one having a sharp discontinuity between 
laminar and turbulent regions}; since, when 
compared with NRP, it is multiplied by c~/2, its 
influence is small. N~F,I can be calculated by 
Spence’s method and for the flat plate is found 
to be not very different from Nfr,t. It is therefore 
understandable that the recovery factor of a 
flat piate with a turbulent boundary layer in 
air is found to be quite close to 0.887 and to be 
practicaliy independent of Reynolds number. 

5. CONCLUSIONS 

(a) Exact solutions of the partial-differential 
equation for heat transfer across a 
turbulent uniform-property boundary layer 
have been examined and shown to exhibit 
regularities, in the region of moderate 
and large longitudinal distance, which 
imply that the molecular properties of the 
fluid exert their influence solely through 
the agency of a “resistance” to heat 
transfer at the wall. In this respect the 
Couette-flow analysis of heat transfer is 
justified ; however, the neglect of the ij/;i,~ 
terms in the turbulent part of the boundary 
layer, which is also part of the Couette- 
ffow analysis, is only justified at high 
Prandtl number. or when the thermal and 
velocity boundary layers are co-extensive. 

(b) Approximate analytical solutions have been 
provided which give good fits with the 
exact solutions for moderate and large .x+ 
[equations (58) and (59)] or for the whole 
range of s- [equations (60) and (61)]. 

(c) It has been argued that the assumption 
that the turbulent Prandtl number is unity 
is no longer tenable, but that the existing 
exact solutions of the partial differential 
equation can be generalized so as to hold 
for any uniform value of Npr,t. 

(d) Tentative recommendations have been 
made for the value of Npr,t (== 0.887) and 

for the form of the P-function [equation 

WI. 
(e) Methods have been indicated of extending 

the theory to the cases of a rough wall, mass 
transfer at an appreciable rate. and non- 
uniform fluid properties. It is suggested 
that progress can be made most reliably 
and swiftly by experimental studies of the 
influence of various non-dimensional argu- 
ments on the P-function; the need for 
exact knowledge of the variation of E,, 
with u’ appears to be correspondingly 
diminished. 

6. ACKNOWLEDGEMENTS 
The author’s thanks are due to the authors of refer- 

ences [ZO] and 1211 for permitting him to use their results 
in advance of pLlbljcatioI1, and to Miss M. P. Steele for 
assistance in preparing the tables and diagrams. 

1. 

2. 

3 . . 

4. 

c _. 

6. 

7. 

8. 

9. 

10. 

REFERENCES 
D. B. SPALDING, Heat transfer to a turbulent stream 
from a surface with a step-wise discontin~l~ty in wall 
temperature. ~llte~~a~i~}i~l Developments it? Hmt 
Transfer (Proceedings of Conference organized by 
ASME at Boulder, Colorado, 1961). Part II, pp. 
439-446. 
J. KESTIN and L. N. PERSEN, Application of Schmidt’s 
method to the calculation of Spalding’s function and 
of the skin-friction coefficient in turbulent flow, Irrt. 
J. Neat Mass Trmvfer 5, 143-152 (1962). 
G. 0. GARDNER and J. KESTIN, Calculation of the 
Spalding function over a range of Prandtl numbers, 
Iit. J. tieat Mass Transfer 6, 289-299 (1963). 
A. G. SMITH and V. L. SHAH. The calculation of wall 
and fluid temperatures for the incompressible turbu- 
lent boundary layer, with arbitrary distribution of 
wall heat flux, Int. J. Heat Mus.s Tmmfer 5, 1 179-l 189 
(1962). 
M. A. L&QUE, Les lois de ia transmission de la 
chaleur par convection, Ant?. 1%4ines, 13. 201, 305, 381 
(1928). 
P. R. OWEN and A. 0. ORMEROD, Evaporation from 
the surface of a body in an air stream. A.R.C. Tech. 
Rep. R 81 M No. 2875 (14,604) (1954). 
M. J. LIGHTHILL, Contribution to the theory of heat 
transfer through a laminar boundary layer, Proc. &.I>. 
SBC. 202A, 359 (1950). 
A. F. MILLS, An analysis of heat transfer and friction 
for turbulent flow in a tube. D.I.C. Dissertation, 
Mechanical Engineering Department, Imperial Col- 
lege ( 1962). 
L. PRANDTL, Eine Beziehung zwischen WBrme- 
austausch und Str~illungswiderstand der Fliissigkeit. 
Z. P&s. 11, 1072-1078 (1910). 
G. I. TAYLOR, Conditions at the surface of a hot body 
exposed to the wind, &it. Amw. Res. Comm. R & M 
No. 272, 423 (f916). 



THEORY OF HEAT TRANSFER ACROSS A TURBULENT BOUNDARY LAYER 759 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

D. B. SPALDING, A single formula for the law of the 
wall, J. Appl. Me&. Truns. ASME Series E, 455-458 

The validity of this supposition will be demon- 

(1961). 
&rated by showing that the substitution of 

R. G. DEISSLER, Analysis of turbulent heat transfer, (A-4) and (AS) into the di~erential equation 
mass transfer, and friction in smooth tubes at high and boundary conditions eliminates both x+/Npr 
Prandtl and Schmidt numbers, NACA Rep. 1210 and u+. 
(1955). 
J. KESTIN and P. D. RICHARDSON, Heat transfer 
across turbulent, incompressible boundary layers, 
Int. J. Heat Mass Transfer 6, 147-189 (1963). 
E. R. VAN DRIEST, Convective heat transfer in gases. 
Chaoter F of Turbulent Flows and Heat Transfer. 
pp. ‘339425 (ed. Lin). Oxford University PI&S; 
London (1959). 
D. A. SPENCE, Velocity and enthalpy distributions 
in the compressible turbulent boundary layer on a 
ffat plate, J. Fluid Mech. 8, 368-387 (1960). 
R. E. JOHNK and T. J. HANRATTY, Temperature 
profiles for turbulent flow of air in a pipe--l, Chem. 
Engng Sci. 17, 867-879 (1962). 
H. SCHLICH~ING, Boundary Layer Theory (4th ed.). 
McGraw-Hill, New York (1960). 
T. VON KARMAN, The analogy between fluid friction 
and heat transfer. Trans. ASME 61. 705-710 11939). 
W. B. RANNJE, ‘Heat transfer in ‘turbulent‘ she& 
flow, J. Aero. Sri. 23, 48.5-489 (1956). 
D. F. DIPPREY and R. H. SABERSKY, Heat and 
momentum transfer in smooth and rough tubes at 
various Prandtl numbers, Int. J. Heat Mass Transfer 
6, 329 (1963). 
P. R. OWEN and W. R. THOMSON, Heat transfer 
across rough surfaces, J. Fluid Me&. 15, 321-334 
f-1963). 

Differentiation of (A.4) yields : 

a 1 rl d - - ___ _- -. 
ax+ 2 + b x+ dv (A.7) 

and 

% 1 d 
-= &f w &. 

So the differential equation becomes: 

(A-9) 

which confirms the validity of (A.6) as far as the 
differential equation is concerned. 

The boundary conditions are obviously: 

T”O : %=I (A. 10) 

r-co: e=o. (A.1 1) 

The absence of (x+/1vpr) and U+ from these 
conditions completes the justification of (A.6). 

A first integration of (A.91 yields: 

APPENDIX dB 
Power-law solutions for Npr = Npr,b - = Cexp __-- 

The isothermal wall problem. Equation (54) 
dv 

f2yhb)““b+2 
I 

(A.12) 

becomes : and a second integration yields: 

aT 1 GT 
<TXwij = u+(lt) Gj * (A.11 B = C ’ exp 

f t 
-L-ah b+2 d? + D (A. 13) 

0 (2 + b)2?1 I 

Suppose where C and D are arbitrary constants to be 
(I + #) = ab (~+)fi-1. (A.2) deduced from the boundary conditions. Jnsertion 

This corresponds to the velocity profile of these yields: 

Y+ = J$+E~ du+ = a (u+)b (A.31 
-ab I__-. 

i.e. to a power-law velocity profile. 
Define : 

71 E ~~/(x~/N~)l~(2+~) 

and 
T - To 

e z Ts - TG 

and suppose : 
e = O(T). 

(2 + b12 ‘b+2 ___“” I 
-ab 

cA 14j 

-- 
c2 + b)z ?b+2 

I 
4 

(A.41 But 

(A.5) 1 dT = 

64.6) 
= [i?k$]1’(b+21 r E_!). (A.15) 
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Hence we obtain the dimensionless temperature 
gradient at the wall as: 

On transformation to the new variables, 
(A. 1) becomes : 

_ (E),;. = [f&] 1i(b+2) [r (&)I -I. 

(A. 16) 

Now 

11 (A-23) 

sT _ Wl~u’h 
Boundary conditions are : 

TG - Ts 
(A.17) 

d@ 
y=o: P=o 

= t;;)-r’@+‘) ($)+. (A.18) 
drl 

(A.24) 

Hence 
v=cc: {@YO 

and in addition: 

(A.25) 

[&/(2 + 42]l/@f2) 

sT = i?@T3)/(6 +T] (A.19) 

In the laminar region 4 equals zero so that 
a = b = 1. Substitution in (A.19) yields: 

ST == 0.53835 (X+/Npr)y3 (A.20) 

This is identical with equation (22) of the main 
text. 

For the turbulent region in which the seventh- 
power profile is a good approximation, suitable 
values are : a = 2.412 x 10-7, b = 7 (this 
corresponds to the velocity profile U+ = 
8.8(y+)r”). Insertion in (A. 19) yields : 

ST,1 = 0.1479 (x+/N&,&r’9 (A.21) 

in which the subscript 1 has been added to ST 
(as a reminder that NP~/NP,.,~ is taken as unity) 
and subscript t has been added to Npr since we 
are considering the turbulent region. This is the 
origin of equation (37) of the text. 

The problem qf the concentrated heat sink 
(section 2.5 of main text) 

Differential equation (A.1) is still valid. Once 
again (A.2) is substituted in (A.l) and the 
independent variable 17 is introduced from (A.4). 
This time the dependent variable chosen is 8, 
defined by: 

f& = (TG - 7) (X+/&.)(li b)!(?imb) (A.22) 

and it is postulated that @I is a function of .r, alone. 

ab j,” L&*+l dV = C/L (7-o - T&‘. (A.26) 

Once again we note that the original variables 
u+ and x+ are absent from the transformed 
equation and boundary conditions, and con- 
clude that the postulate @J = m@(7) is indeed 
justified. 

A fh-st integration of (A.23) yields: 

d& d17- + b?;-z q&b+1 = const. (A.27) 

The constant is seen to be zero from boundary 
condition (A.24). 

A second integration yields: 

$1 = c exp 
-ab 

(6t~m2>2 7b+2 

I 

(A.28) 

where C is an integration constant to be deduced 
from the integral condition (A.26). We obtain: 

(A.29) 

Now 

(b + 2)a (b~l)i(b+a) 
= 

[- I ab 
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Hence, 

A 

P 
~ CP (TG - Ts) 

., 
4 - 

b + 1 (b + 2)2 (b+l)lV+2) 
=-_--- I_____ 

(b + 2)s [ 1 ab . (A.31) 

The problem with uniform f’/(rs)1/2 
S, may be obtained from: 

J (z+lNPr) 

cwl = o A, d (x+/i’&,.). (A.32) 

which comes from equation (29) of the text. 
Hence 

sp = (&) [&]1’(L+2i 
[I’ (yw)] (x&yb+2) * (A-33) 

I I 

For the laminar region, a = b = 1 as before. 
Then : 

Sp = O-651 (x+/N&-r’s (A-34} 

which has been presented in the text as equation 
(24). 

For the “seventh-power” velocity profile, 
a = 2,412 x IO-7 and b = 7, so that: 

S&l = 0.1509 (X+/N&&r’s (A.35) 

wherein the subscript t has been added to Npr 
because we are mainly concerned with the 
turbulent region of the boundary layer, and the 
subscript 1 has been added to S, as a reminder 
that ~~/N~~,~ is supposed equal to unity. 

Rbum&--On montre que certaines regularitbs existent dans les solutions exactes de I’dquation aux 
dtrivees partielles du transport de chaleur pour des proprietes uniformes publiee par Gardner et 
Kestin [3] et Smith et Shah [4]. Ces regularitts permettent le developpement de formules approchees 
pour le nombre de Stanton qui sont probablement aussi sores, comme moyen de prediction du trans- 
portde chaleur,que le sontles solutions bakes sur l’integration numerique. 

Les solutions sont generalisees de telle facon qu’elles s’appliquent au cas du “nombre de Prandtl 
turbulent” constant et different de 1 et on demontre qu’une valeur au voisinage de 0,887 devrait &tre 
utiIis&e dans un travail futur. On presente une discussion sur la facon selon laquelle la theorie peut- 
Ctre &endue: aux parois rugueuses; au transport de masse a vitesse finie; et aux proprietes non 

uniformes du fluide. 

Zusamrnenfassung-Es werden gewisse Regelmassigkeiten gezeigt, die in den exakten Losungen 
partieller Differentialgleichungen auftreten fur den Warmeiibergang bei einheitlichen Stoffwerten, 
wie sie von Gardner und Kestin [3] und Smith und Shah [4] veroffentlicht werden. Diese Regel- 
mlssigkeiten erlauben die Entwicklung von Nlherungsformeln fur die Stanton-Zahl, die wahr- 
scheinlich zur Bestimmung des Wiirmetibergangs genauso zuverllssig sind, wie die auf numerischer 
Integration beruhenden Losungen. 

Die Losungen werden such auf den Fall ausgedehnt, dass die “turbulente Prandtl-Zahl” eine von 
Eins verschiedene Konstante ist und es wird empfohlen, in zukiinftigen Arbeiten einen Wert nahe 
0,887 zu verwenden. In einer Diskussion wird die Erweiterungsm~glichkeit der Theorie auf rauhe 

W&de, endlichen Stoffaustausch und nicht einheitliche Stoffeigenschaften erortert. 

~~OTa~H~-~OKa3aHO, YTO C~~eCTB~~T Oupe~e~~eHIibIe 3aKOHOM~pHOCT~~ B TOYHbIX lK?III~- 
HHRX~~Qt~~p~H~ElajIbIIO~O~paRH~HElRB~aCTHbIX~~O~3BO~HbIX~~RT~n~OO6M~Ha~O~trOpO~- 
HbIMB CBOnCTBaMII, KOTOpbIe 6bIJIK Ony6JIKKOBaHbI rapE.aepOM >I &CTKHbIM [3] EI CMKTOM. II 
UIaXOM [4]. 3Tn 3aKOIlOMePHOCTR n03BOJIFIIOT BbIBf?CTM IIpII6WKeHHbIe +OpMjVIbI $I3 'fKCJIa 
CTaHTOHa, KOTOpbE, IlOnII~MMOMy, CTOJIb HanerKHbI, ~JIII pacseTa TenJIOO6MeHa, KaK 5% 
pIXIIeHHZ3,OCHOBaHHhIe Ha 'IKCJIeBHOM IIHTerpKpOBaHKK. 

PeIIIeHKn o6o6meabI TaKKM 06pa30M,YTO OHA Cl'IlWH?~JII4BbI AJIK CJIy'IaJT, @Tyn6yJIeHTHOe 
'IRCJIO npaHJITJIRP eCTb IIOCTORHHaR,OTJIWIaIOIIIaRCR OT e~HHKI&I. aOKa3aH0, YTO OHaYeHKe, 
npIi6JIK3KTeJIbHO PaBHOe 0,887, ,?rOJI~HO 6bITb IICIIOnb30BaHO B AaJIbHetimefi pa6OTe. OfiCy- 
IxJIaIOTCK IIyTII paCUpOCTpaHeHl4fI 3TOii TeOpHH lIpi3 IIIepOXOBaTbIX CTeHKaX, MaCCOO6MeHe C 

KOHfFIH08 CKOpOCTbK) K iKKJIKOCTkI C HeO~HO~O~H~~~ CBO~CTBaM~. 


